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Reductive acylation of 2- and 3-nitropyrroles—efficient
syntheses of pyrrolylamides and pyrrolylimides
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Abstract—An efficient one-pot synthesis of pyrrolylamides and pyrrolylimides is described under mild reaction conditions by the
catalytic hydrogenation of 2- and 3-nitropyrroles.
� 2007 Elsevier Ltd. All rights reserved.
Pyrrolylamides and pyrrolylimides are potentially useful
intermediates for the construction of pyrrole-based
heterocycles and medicinal compounds.1,2 For example,
pyrrolylimide 6c was employed in the first synthesis of
the naturally occurring bipyrrole Q1,1c and the well-
known distamycin antitumor agents are pyrrolylamides
(e.g., netropsin).
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As an extension of our recent catalytic reductive acyl-
ation of 2- and 3-nitroindoles,3 we now describe a new
route to pyrrolylamides and pyrrolylimides via the Pd/
C catalyzed reductive acylation of 2- and 3-nitropyr-
roles. Catalytic hydrogenation has long been utilized
as a convenient and efficient nitro group to primary
amine reduction method.4 However, in the present case
the relative instability of 2- and 3-aminopyrroles nor-
mally precludes their isolation and handling.5
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We now report that 2- and 3-nitropyrroles are smoothly
reduced and N-acylated under atmospheric catalytic
hydrogenation conditions in the presence of carboxylic
acid anhydrides to afford the expected pyrrolylamides
(Scheme 1 and Tables 1 and 2). A previously reported
reductive acylation of nitropyrrole 1a was carried out
under high pressure in THF.1a Four readily prepared
nitropyrroles (1-methyl-3-nitropyrrole (1a), 3-nitro-1-
(phenylsulfonyl)pyrrole (1b), 1-methyl-2-nitropyrrole
(1c), and 2-nitro-1-(phenylsulfonyl)pyrrole (1d))6 were
subjected to catalytic reductive acylation.
Thus, 1-methyl-3-nitropyrrole (1a) is hydrogenated
using 10% palladium on carbon in the presence of acetic
anhydride in MeOH at 70 �C at atmospheric pressure to
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Table 1. Catalytic reductive acylation of nitropyrroles with H2, Pd/C,
and acetic anhydride in methanol at 70 �Ca

Nitropyrrole PG Product Yieldb (%)

1a Me 2a 91
1b SO2Ph 2b 99
1c Me 2c Decomposition

during workup
1d SO2Ph 2d 55

a Temperature of the oil bath.
b Yield after column chromatography.
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provide the desired pyrrole acetoamide 2a in 91% yield
(Scheme 1 and Table 1).7 Likewise, nitropyrroles 1b
and 1d are converted to 2b and 2d under the same reac-
tion conditions in 99% and 55% yields, respectively.8

The attempted reductive acylation of nitropyrrole 1c
led to decomposition and product 2c was not isolated.

Moreover, the reductive acylation using other carb-
oxylic acid anhydrides and Boc anhydride is successful.
As shown in Table 2 and Scheme 2, benzoic acid
anhydride gives pyrrole benzamides 3a and 3b in 79%
and 80% yields, respectively.8 Hexanoic anhydride
affords the expected pyrrole hexamides 4a and 4b in
88% and 92% yields, respectively.8 The t-butoxy-
carbonyl-protected amides 5a and 5b are obtained in
yields of 79% and 75%, respectively.8

The same reaction conditions were extended to the
preparation of pyrrolylimides. Unfortunately, when
1-methyl-3-nitropyrrole (1a) was hydrogenated in the
presence of succinic anhydride, none of the expected
succinimide was obtained and 1a was recovered. In con-
trast, when acetic acid rather than methanol was used as
the solvent, the desired pyrrolylimides were obtained
(Scheme 3 and Table 3). Thus, nitropyrroles 1a, 1b,
Table 3. Reductive acylation of nitropyrroles with H2, Pd/C, and cyclic anh

Entry Nitropyrrole PG A

1 1a Me S
2 1b SO2Ph S
3 1c Me S
4 1a Me P
5 1b SO2Ph P

a Temperature of the oil bath.
b Yield after column chromatography.

Table 2. Catalytic reductive acylation of 3-nitropyrroles with H2, Pd/C and

Entry Nitropyrrole PG Anhydride

1 1a Me (PhCO)2O
2 1b SO2Ph (PhCO)2O
3 1a Me (C5H11CO)2O
4 1b SO2Ph (C5H11CO)2O
5 1a Me (Boc)2O
6 1b SO2Ph (Boc)2O

a Temperature of the oil bath.
b Yield after column chromatography.
and 1c were hydrogenated in the presence of succinic
anhydride in acetic acid at 125 �C to give the desired
pyrrolylimides 6a, 6b, and 6c in 77%, 72%, and 54%
yields, respectively.8 In addition, phthalic anhydride
furnishes pyrrolylimides 7a and 7b in 75% and 69%
yields, respectively.8

In summary, we have described an efficient synthesis of
pyrrolylamides and pyrrolylimides via the reductive
acylation of 2- and 3-nitropyrroles in the presence of
carboxylic acid anhydrides. In general, 3-nitropyrroles
afford higher yields of reductive acylation products than
do 2-nitropyrroles. Noteworthy is the synthesis of t-
butoxylcarbonyl-protected pyrrolylamides 5a and 5b,
which could serve as precursors for in situ generation
of 2- and 3-aminopyrroles for use in synthesis.
ydrides in acetic acid at 125 �Ca

nhydride Product Yieldb (%)

uccinic anhydride 6a 77
uccinic anhydride 6b 72
uccinic anhydride 6c 54
hthalic anhydride 7a 75
hthalic anhydride 7b 69

different anhydrides in methanol at 70 �Ca

R Product Yieldb (%)

Ph 3a 79
Ph 3b 80
(CH2)4CH3 4a 88
(CH2)4CH3 4b 92
Boc 5a 79
Boc 5b 75
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